NLP Text Classification

CMPE/CISC 452

Andy Craig (20146870)
Devynn Garrow (20148909)
Jessica Guetre (20145059)
Tom Hamilton (20165886)

Group 13
Prof. Hazem Abbas

December 6, 2023

Table of Contents

I MOTIVALION «aueeneneronnerosnescssanisssssssssassasssssssssssasssssassses 4
2 PrODIeHt DESCHIPHION «auveennenvereoossnasisosssanssessssssssesssasssssssans 4
2.1 Dataset 4
2.2 GloVe 5
23 WOEA2ZVEC cuuueiiueiiineinnenisennisenncsnecssseisssesssssnssssesssseesssessssasssasssssess 5
24 Evaluation Framework 5
2.5 Challenges and Limitations w5
3 CORIFIDULIONS couuueeeeosnnneriossssansoosssnsressans 5
4 RelALEA WOTK...unuaeoonnevonneinnaeinssnersssseisssanisssssssssssssssasssassssssssssnasss 6
4.1 Foundational Paper* 6
4.2 Relevant Journal Paper* 7
4.3 Paper Addressing Similar Issue* 7
I) 17 7 R X 7
O THIPICHICHIATION c.nuuannnnenonnneronnernssunnossanrossssssssasssssassassssses 8
6.1 Data Preprocessing 8
6.2 Experimental Setup 9
6.3 Model Architecture 10
6.4 Training, Testing, and Validation 11
7 ReSults ANnd DiSCUSSION ca...eueeneeeeneensueenvenseensaenssuenssessssesssnssssesssessssessssesssssssassssasssssssassssssssns 12
7.1 Results 12
7.2 Discussion .12
8 Conclusion and FUTUFE WOTKneeenneenneensueennensuensuenssnenssensssssssesssesssessssessssssssssssasssses 16
8.1 Areas for Improvement: 16
9 WOTK GO annnnnnnaennnennnnennnennnennennnnensneensensssesssessssessssssssesssassssessssssssssssassssesssssssssssssssssasssne 17

List of Tables

Table 1: Group members and their individual contributions. 5
Table 2: 20NewsGroups categories partitioned by subject matter [5]. 8
Table 3: Sample of the comp.graphics newsgroup from the 20NewsGroups dataset [4] 8
Table 4: Sample of the comp.graphics newsgroup from the 20NewsGroups dataset refined by the preprocessing

code [4]. 8
Table 5: Sample of the comp.graphics newsgroup from the 20NewsGroups dataset refined by the preprocessing

code [4]. 9

Table 6: Results from implemented architectures and published models [1] to compare pre-trained word
embeddings and classification models. Errors were obtained using results from 3 runs. Note that the last three
columns were unavailable from the published models, thus are listed as N/A. 12

List of Figures

Figure 1: Dataflow diagram depicting the entire preprocessing stage. 9
Figure 2: CNN model architecture. 11
Figure 3: LSTM model architecture. 11
Figure 4: Architecture of CNN + LSTM model 11
Figure 5: Classification Model Comparison of Validation Accuracy for GloVe Pre-trained Word Embeddings 13
Figure 6: Classification Model Comparison of Validation Accuracy for Word2Vec Pre-trained Word Embeddings _ 14
Figure 7: Embedding-independent Classification Model Comparison of Validation Accuracy 15

Figure 8: Model-independent Embedding Comparison of Validation Accuracy 15

1 Motivation

Our motivation to explore NLP text classification arises from the impactful study, "A Comparative
Study on Word Embeddings in Deep Learning for Text Classification," examined in the literature
review. Conducted on the 20NewsGroups dataset, the study highlights the crucial role of word
embeddings in text classification, comparing classical and contextual embeddings to guide optimal
model selection.

The current surge of interest in NLP and genetic algorithms, evident in innovations like ChatGPT
and ML applications in natural language processing, has driven this exploration. We are intrigued
by how these generative algorithms process and interpret natural language, motivating us to
investigate their potential applications in text classification. This exploration is pivotal, potentially
shaping the future of text-processing mechanisms and providing insights into the effectiveness of
different embedding strategies.

Our project aims to reveal the nuanced performance of classical versus complex word embeddings,
recognizing that classical embeddings might outperform their more intricate counterparts. This
comparative analysis seeks to offer valuable insights into the evolving landscape of NLP, guiding
the development of future text classification models. Optimizing word embeddings for text
classification is critical in practical applications, ranging from information retrieval systems to
sentiment analysis tools. Our project directly addresses this by comparing classical and contextual
embeddings on the widely used 20NewsGroups dataset.

The deliberate choice of the 20NewsGroups dataset for the experiments is grounded in its ubiquity
sin the field and its inclusion in the reference paper. It is a pertinent benchmark for comparing
various embedding approaches in text classification, aligning with the objective to contribute
meaningfully to ongoing NLP discussions.

2 Problem Description

Our project addresses a fundamental question in natural language processing (NLP): determining
the optimal combination of word embeddings and neural architectures for effective text
classification. This exploration begins by comparing the performance of two widely utilized pre-
trained word embeddings, namely GloVe and Word2Vec, across three distinct neural
architectures—Convolutional Neural Network (CNN), Long Short-Term Memory Network
(LSTM), and a hybrid of CNN with LSTM.

2.1 Dataset

The dataset selected is the well-established 20NewsGroups dataset. Comprising around 20,000
newsgroup documents categorized into 20 distinct groups, 20NewsGroups stands as a cornerstone
in the realm of machine learning applied to text. Renowned for its use in text classification and
clustering experiments, this dataset serves as a robust foundation for the comparative analysis.
This project delves into two types of word embeddings to discern their impact on text
classification, GloVe and Word2Vec.

* Unless otherwise cited, content from each paper investigation comes from its corresponding paper 4|Page

2.2 GloVe

GloVe operates as an unsupervised learning algorithm, generating vector representations for words
based on global word-word co-occurrence statistics. Our choice of GloVe is grounded in its ability
to reveal interesting linear substructures within the word vector space.

2.3 Word2Vec

Word2Vec represents a family of model architectures and optimization techniques for learning
word embeddings from extensive datasets. We opt for Word2Vec due to its proven success across
various downstream NLP tasks, showcasing its versatility.

2.4 Evaluation Framework
Our evaluation framework involves six distinct combinations of word embeddings and model
architectures:

1. GloVe+ CNN

2. GloVe+LSTM

3. GloVe+ CNN+LSTM

4. Word2Vec + CNN

5. Word2Vec + LSTM

6. Word2Vec + CNN + LSTM

Effectiveness will be gauged by the model's accuracy in correctly classifying text segments into
the relevant news categories.

2.5 Challenges and Limitations

While undertaking this comparative study, this project acknowledges a potential challenge arising
from the inherent dependence of word embedding effectiveness on the specific characteristics of
the dataset. Consequently, the model's findings may be more directly applicable to the nuances of
the 20NewsGroups dataset. However, this limitation is intrinsic to NLP tasks, and this project aims
to provide insights and recommendations that contribute meaningfully to the broader discourse on
text classification. Insights derived from this analysis have the potential to inform best practices in
text classification, guiding future endeavours in NLP and influencing the selection of word
embeddings and neural architectures for optimal performance in diverse applications

3 Contributions

Table 1: Group members and their individual contributions.

Individual Contributions

GloVe pre-trained word embeddings, Dataset
Implementation collection, Tokenization and Vectorization, Initial
CNN, LSTM, + Combo Models

Devynn Garrow

Report + Presentation | Results and Discussion, Contributions

* Unless otherwise cited, content from each paper investigation comes from its corresponding paper 5|Page

Dataset collection, Data preprocessing,

Implementation i7ati izati
plementatio Tokenization and Vectorization

Jessica Guetre
Related Work, Datasets, Implementation (Data

Report + Presentation .
Preprocessing)

Word2Vec pre-trained word embeddings, Dataset
Implementation collection, Tokenization and Vectorization, Model
Iteration

Tom Hamilton
Implementation (Experimental Setup, Training,

R +P i . N
eport + Presentation Testing, and Validation)

Implementation Model Iteration, Modularization

Andy Craig
Motivation, Problem Description, Conclusions

. .
Report + Presentation | ‘e

4 Related Work

4.1 Foundational Paper*

The first relevant paper reviewed in the literature review submission was "A Comparative Study
on Word Embeddings in Deep Learning for Text Classification” [1]. The foundational paper
illustrates the importance of word embedding selection, specifically by comparing classical and
contextual word embeddings. Using the 20NewsGroups dataset, the study explores what neural
network and embedding framework produces the most efficient model for text classification. A
notable finding from the study is that classical word embeddings, including Word2Vec, GloVe
and FastText, outperform contextualized embeddings like ELMo and BERT for long
documents. This contradicts the general trend towards selecting more complex models. The
implication is that simpler embeddings may be the more practical choice in analyzing long
documents.

The paper "A Comparative Study on Word Embeddings in Deep Learning for Text
Classification" implements a strong foundation for systematically comparing word embeddings.
However, one weakness of the paper is the input length restrictions of contextual embeddings,
causing a deficit in its ability to process long documents. The conclusion that no significant
performance increase was observed for contextual embeddings on the 20NewsGroups dataset
can be used in the context of this project to help interpret results. Further comparisons between
the paper and this project models can be drawn from their shared use of Word2Vec and GloVe
as classical word embeddings, CNN and LSTM as encoders, and the 20NewsGroups dataset.
However, in contrast to the paper, which focuses on the comparative effectiveness of different
embeddings, the model from this project addresses the combined result of different neural
network architectures and hybrid models.

* Unless otherwise cited, content from each paper investigation comes from its corresponding paper 6|Page

4.2 Relevant Journal Paper*

The model presented in "A unified approach to sentence segmentation of punctuated text in
many languages," ERSATZ, centers on the task of sentence segmentation, a fundamental step
in NLP pipelines [2]. Comparatively, this model focuses on classification, utilizing the
segmented data for training and prediction. The strength of ERSATZ lies in its context-based
design, which is adaptable to multiple languages and can be a crucial preprocessing step for this
model's classification tasks.

The datasets used in the ERSATZ paper, primarily sourced from the WMT News Translation
tasks, provide a multilingual basis for sentence segmentation. This diversity in data can enhance
the robustness of the preprocessing steps in this model, mainly if multilingual classification is
an objective. However, the paper acknowledges that it does not evaluate the impact of sentence
segmentation on downstream tasks such as text classification, which this model directly
addresses. The accuracy of ERSATZ is not directly comparable to this model as they serve
different functions within the NLP pipeline. The model proposed by this project does not
employ sentence segmentation and, therefore, cannot be compared. However, similarities
between the models can be drawn from their shared use of preprocessing for the training and
test data and a detailed display of results to conclude the model.

4.3 Paper Addressing Similar Issue*

"Hate Speech Detection Based on Sentiment Knowledge Sharing" proposes a model for hate
speech detection using Sentiment Knowledge Sharing (SKS) [3]. The model's strength is its use
of multi-task learning to improve hate speech detection by incorporating sentiment analysis. In
comparison, this model may utilize sentiment analysis as an additional feature within its
classification framework to potentially enhance. The datasets used in the SKS paper, such as
the SemEval2019 task 5 and Davidson datasets, are curated explicitly for hate speech detection.
This specificity contrasts with this model's use of the more general 20NewsGroups dataset,
indicating a potential expansion area for this model to specialize in hate speech detection.

The SKS model reported improved accuracy and F1 scores over various baseline models,
presenting a strong precedent for this model to measure against, especially if adapted for hate
speech detection. The integration of sentiment analysis within the classification models could
address a weakness in the SKS paper, where the imbalance in datasets led to potential
overfitting. This project lacks similarity to the paper's model, given that it does not employ
sentiment analysis. However, with sentiment analysis, this project serves as a framework for
use in hate speech analysis, given its existing classification structure.

5 Datasets

The dataset used in training and evaluation is 20NewsGroups, a collection of around 20,000
newsgroup documents sectioned into 20 distinct newsgroups. 20NewsGroups is "a popular data
set for experiments in text applications of machine learning," including "text classification and text
clustering" [4]. Table 2 shows the categories of the dataset, partitioned by subject matter.

* Unless otherwise cited, content from each paper investigation comes from its corresponding paper 7|Page

Table 2: 20NewsGroups categories partitioned by subject matter [5].

comp.graphics .
. . rec.autos scL.crypt
comp.os.ms-windows.misc . .
. rec.motorcycles sci.electronics
comp.sys.ibm.pc.hardware)
rec.sport.baseball sci.med
comp.sys.mac.hardware .
. rec.sport.hockey sci.space
comp.windows.x
talk.politics.misc talk.religion.misc
misc.forsale talk.politics.guns alt.atheism
talk.politics.mideast | soc.religion.christian

Each document in the dataset is given one of these labels to classify its subject matter. Table 3
shows a sample excerpt from the comp.graphics newsgroup, showing the type of text data the
model was exposed to [4].

Table 3: Sample of the comp.graphics newsgroup from the 20NewsGroups dataset [4]

My brother is in the market for a high-performance video card that supports
VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on:

- Diamond Stealth Pro Local Bus

- Orchid Farenheit 1280

ATI Graphics Ultra Pro

Any other high-performance VLB card

Please post or email. Thank you!

- Matt

The numerous textual formats and linguistic styles can make it challenging for machine learning
models to understand and categorize nuances in text effectively. However, this diverse data results
in a model's enhanced ability to withstand various applications and scenarios

6 Implementation

6.1 Data Preprocessing

Starting with the unprocessed data from the 20NewsGroups dataset, such as that shown in Table
3, the data undergoes initial refining to remove any extraneous characters for more efficient
training. This includes stripping special characters, removing whitespace, converting text to
lowercase, and expanding contractions. Stopwords, common words such as "is" and "the" are
also removed. Table 4 shows what the comp.graphics text data from above becomes after this
process.

Table 4: Sample of the comp.graphics newsgroup from the 20NewsGroups dataset refined by the preprocessing code [4].

my brother market high performance video card supports vesa loc
al bus 1 2mb ram does anyone suggestions ideas diamond stealth

§|Page

pro local bus orchid farenheit 1280 ati graphics ultra pro any
other high performance vlb card please post or email thank matt

Following the refining portion of preprocessing, the data is shuffled. The data is then tokenized,
breaking it up into individual words or tokens. This is necessary to enable the model to process
the text word-by-word. The final step is padding and vectorization. The padding is required to
ensure that all the training and testing inputs are equal in length. Vectorization transforms the
string tokens into integer values. In the case of pre-trained word embeddings like Word2Vec
and GloVe, these values correspond to indices. The same comp.graphics text sample is shown
in Table 5 after having undergone all of the vectorization process.

Table 5: Sample of the comp.graphics newsgroup from the 20NewsGroups dataset refined by the preprocessing code [4].

[

eNeoNeololeNolNolNololololoNoloNoNoNoNoNoNoNo
eNeoNeololoNoNoNoNololoNoNo oo NoNeoNo o NoNo)
cNeoNeoNoNeoNoNoNoNoNoNoNoNolNoNoNoNoNolNoNolNol
cNoNoRoNoNoNoNoNoNoNoNoNoloNolNoNolNolNoNolNo]
O OO O OO ODODODODODOOOOOOOoooOo
eNeoNeoNoloNoNoNoNolNoloNolNolNoNoNoNoNo o Ne]
eNeoNoNoBoNoNoNoNoNoloNoNoloNolNolNolNolNolNo]
ecNeoNoNoNoNoNoNoNoNoloNoNolNoNoNoNolNolNolNo]
eNeoNeololoNololololelololNoloNoNoNoNoNeNe]
eNeoNeoNoloNololNolNolNoloNolNolNoNoNoNoNo o Ne]
eNeoNoNoloNoNoNoNolNoloNolololNoNoNolNolNoNol

(@]

0
0 0 22 2160 272 769 522
311 1283 2875 381 636 9 6044 846 122 1374 956
2692 4030 1147 381 636 6664 72564 12499 2538 344 3357 1147
38 55 272 769 2884 311 152 271 5 386 1059 2608]

cloleoloNeolNoloNeololNolololololNoNoloNoNoloNo e
o
o
(@]
(@]

o
o
o
NeJ
[ee]
[ee]

~J
[

Figure 1 shows a dataflow diagram depicting the entire preprocessing stage. Preprocessing is
the same for all models analyzed.

/

//-"'
‘ ‘) / N
Input Data —— RefineData ——> Shutfle —_— Tokenize S Pad —_ Vectorize (Preprocessed Data |
— /

Figure 1: Dataflow diagram depicting the entire preprocessing stage.

6.2 Experimental Setup

The models were programmed in Python using Tensorflow and Keras. Additionally, NumPy
and Pandas were used for preprocessing, Scikit-Learn was used to import and partition the
dataset and to calculate performance metrics, and Matplotlib was used to generate the necessary
plots for analysis. Jupyter Notebooks were used to separate parts of the model testing to improve

9|Page

readability. All dependencies can be installed from the requirements.txt file using the 'pip install
-1 requirements.txt' command, as outlined in the read me file. Furthermore, the 300 features
pretrained GloVe embeddings must be installed. This can be done using the GloVe 6B dataset
on Kaggle [6]. Note that the Word2Vec pre-trained embeddings do not need to be preinstalled
and are retrieved in the pretrained code using the GenSim library.

6.3 Model Architecture

Three models were developed to effectively compare different embedding and encoding
techniques, utilizing distinct encoding methods for each. Subsequently, GloVe and Word2Vec
were independently implemented into the three models, resulting in six variations.

The first model was a convolutional neural network (CNN), using convolutional layers to perform
encoding. The goal was to have convolution and pooling layers to perform feature extraction on
the texts after the pre-trained embeddings. Dropout layers were also included to prevent the model
from overfitting and to increase robustness. The first layer of the model was an embedding layer
with 300 output dimensions, followed by a dropout layer (50% rate). Next, a 1-D convolutional
layer with 300 filters was followed by a max pooling layer, which was repeated once. A 1-D
convolutional layer was then added, with the filters being reduced to 128, followed by another max
pooling layer; this pair of layers was then repeated. Finally, a dropout layer was added (50% rate),
followed by a dense layer using the SoftMax activation function with 20 output nodes to perform
the classification. Note that a pool size of 3 was used for all max-pooling layers, and for all
convolutional layers, ReLU activation was used. A diagram of the model can be seen in Figure 2.

The second model was a fully connected neural network that used LSTM. The intention for this
model was to use LSTM to learn patterns in the text sequences and then use multiple fully
connected layers to perform further feature extraction. Dropout was once again incorporated to
help prevent overfitting. First, an embedding layer with 300 output dimensions, followed by a
dropout layer (50% rate). Next, a dense layer with ReLLU activation and 100 output nodes is
followed by another dense layer using ReLU with 50 output nodes. The final layer was a dense
layer using SoftMax activation with 20 output nodes to classify the data. A diagram of the model
architecture can be seen in Figure 3.

The final model architecture used a combination of CNN and LSTM to perform encoding. By
combining LSTM and convolutional techniques, the hope was for improved pattern recognition
and feature extraction of the texts. The architecture was the same as the initial CNN model, with
an additional LSTM layer before the final dense layer performing the classification. The model's
architecture can be seen in Figure 4.

10|Page

J

- - - l - Pretrained N
Embeddings Prefrained 1D Convolution
Pretrained 1D Convolution Embeddings 128 fiters
Embeddings 128 filters)
k. A b A ¢ ¢
s ¢ At s ¢ ™) Max Pooling
LSTM Dropout o
D Max Pooling Pool Size = 3
ropout Pool Size = 3 : : /
k. A b A ¢ ™\ ¢
¢ ¢ 1D Convolution 1D Convolution
' A (" A Dronout 300 filters 128 fiters
1D Convolution 1D Convolution P J
300 filters 128 filters 'L - ¢
~ < ~ < ; Mazx Pooling Max Pooling
¢ ¢ Pool Size =3 Pool Size=3
(N (N Dense - RelU J
Max Pooling Max Pooling 100 Output Nodes] 7
Pool Size =3 Pool Size =3 A
1D Convolution
-) g - 1 g I 300 fiters Dropout
s ~ I ~ -
) Dense - RelLU VL ¢
1D Convolution
. Dropout 50 Quiput Modes) N
300 filters Max Pooling
N — LSTM
\ J \ J Pool Size = 3
I } N S)
i ™ i ™
Mazx Pooling Dense - SoftMax Dense - SoftMax)
— Dense - SoftM
Pool Size = 3 20 Output Nodes 20 Qutput Nodes 20 Outout Notlee
A A A A —ep
Figure 2: CNN model architecture. Figure 3: LSTM model architecture. Figure 4: Architecture of CNN +

LSTM model

6.4 Training, Testing, and Validation

Model training was a very iterative process, with model architectures and hyperparameters such
as optimizers, number of epochs, batch size, etc., being tuned to find the ideal values. To fairly
compare the different models, hyperparameters were kept the same across all models. The
Adam optimizer, a variation of stochastic gradient descent that also considers momentum, was
used in the final model. Normal stochastic gradient descent and Adagrad were also tested but
produced worse results. The number of epochs for training was 30; this was determined by
plotting the training and validation loss and observing when the model converged, and the loss
stopped decreasing. Furthermore, the learning rate used was 0.001, 0.01 and 0.0001 were also
experimented with, producing inferior results. As this is a classification task, sparse categorical
cross entropy was used as the loss function.

The dataset was partitioned with 80% in the training and 20% in the testing sets. Further, 10%
of the training set was further partitioned into the validation set to perform validation. To
evaluate the models, the accuracy score was calculated on the training and validation sets during
training and on the testing set after training was complete.

11|Page

7 Results and Discussion
7.1 Results

Table 6: Results from implemented architectures and published models [1] to compare pre-trained word embeddings and
classification models. Errors were obtained using results from 3 runs. Note that the last three columns were unavailable from
the published models, thus are listed as N/A.

Source Word Model Test Accuracy Average Epochs to Estimated
Embedding Epoch 75% time to 75%
Duration Validation Validation
(s) Acc Acc (mins)
CNN 79.74+0.84% | 24.8+0.5 ~9 3.72+0.08
GloVe LSTM 76.50+0.87 % | 48.3+2.0 ~18 14.49 + 0.60
proect %ﬂ\; 79.64+0.60% | 26.1+0.4 11 479 +0.07
Impl tati
fplementation CNN | 7879£091% | 25.0+0.3 ~12 5.00 % 0.06
Word2Vec LSTM 73.25 £0.79% 37.8+1.0 N/A N/A
(ngﬂ\z 7787+0.64% | 258+0.6 ~17 7314017
CNN 82.61 £0.86% N/A N/A N/A
GloVe
N/A N/A
24 £0.999
LSTM 74.24 £ 0.99% N/A
N/A N/A
. CNN 82.67 + 0.85%
Published Word2Vec N/A
Models N/A N/A
LSTM 2.45 +1.099
S 62.45 09% N/A
N/A N/A
Baseline CNN 78.00 = 0.94% N/A
(Non Pre- N/A N/A
trained) LSTM 49.02 +1.13% N/A

Results are presented in Table 6, and are divided by word embedding, showing results for each
model for each word embedding for the implementation described in Section 6.3, as well as the
published models used in Wang, Nulty, and Lillis' study [1]. The architecture referred to as
baseline uses the same classification models but does not use pre-trained embeddings. Instead, it
uses a "randomly initialized trainable embedding layer" with an encoding vector dimension of 100

[1].

7.2 Discussion

The best architecture in test accuracy and computational cost is using GloVe pre-trained word
embeddings with the CNN classification model, producing the highest test accuracy of all models,
with results better than the published baseline model. However, this implementation is 2.87 +
2.40% less accurate than the state-of-the-art model using the same architecture. The published
architecture uses 100 filters of filter sizes 2, 3, and 4 with an Adam optimizer trained over 140
epochs with dropouts between 0.2 and 0.5 between layers [1]. Therefore, the source of this

12|Page

improved accuracy is likely the extended training time, which was not used in this implementation
due to computational limitations.

Comparatively, the architecture using GloVe with the LSTM classification model performs
slightly worse in terms of accuracy than CNN; however, it also takes much longer to train,
increasing computational cost and decreasing overall performance. This agrees with the expected
results, as CNN works to extract features and reduce dimensionality, increasing training speed and
decreasing computational cost. Although this architecture performs significantly worse than the
implementation using CNN, it performs much better than the baseline LSTM model and slightly
outperforms the published architecture using GloVe with LSTM. The published LSTM model
uses a bidirectional LSTM with a hidden dimension of 256. In contrast, this implementation uses
100, indicating that this reduced hidden dimension size produces better results for natural language
processing tasks, specifically when considering the 20NewsGroups dataset.

The final classification model used with GloVe embeddings combines CNN and LSTM, as
described in Section 6.3. Although there is no comparable model in the published architecture
considered, this architecture performs similarly to the implementation using CNN alone with
respect to model accuracy and training time. Therefore, to differentiate the performance between
this model and CNN alone, the number of epochs to reach a 75% validation accuracy can be
considered, indicating that CNN alone reaches this threshold earlier, leading to the conclusion that
the architecture using solely a CNN classification model is the best solution when using GloVe
pre-trained word embeddings. Figure 5 summarizes these results between models for the GloVe
pre-trained word embeddings.

GloVe Embedding with Various Classification Models

0.8
0.7 1
0.6 1
>
v
o
L
3 0.5 -
v
R 4
0.4 1
— CNN Accuracy
0.3 4 LSTM Accuracy
—— CNN & LSTM Accuracy

(') 5I 1'0 1'5 2'0 2'5 3'0
Epoch
Figure 5: Classification Model Comparison of Validation Accuracy for GloVe Pre-trained Word Embeddings
Similar model-specific trends can be observed for architectures using Word2Vec pre-trained
embeddings and can be compared to GloVe embeddings to evaluate their relative performances.

As expected, for Word2Vec, the implementation using a CNN classification model performs the
best in terms of test accuracy and computational duration. This implementation also performs

13|Page

better than the baseline CNN architecture; however, these two architectures perform similarly
when accounting for error. This performance reduction, compared to a similar implementation
with GloVe, can also be observed in the decrease in accuracy between this implementation and the
published model, at 4.79 £ 1.20% %, which is more than this comparison for GloVe.

The architecture using Word2Vec with LSTM also produces lower accuracy than the
implementation using GloVe, but this implementation still vastly outperforms the published
baseline model and quite significantly outperforms the published architecture using Word2Vec
with LSTM. This supports the prior conclusion that the LSTM model employed in this
implementation is superior to that described in relevant publications, especially when using
Word2Vec embeddings. As expected, classification using this LSTM model results in much
longer training times than those using CNN; however, it has a noticeably shorter average epoch
duration than the same classification model with GloVe embeddings.

Finally, the combination model using Word2Vec embeddings performs similarly to the model
using CNN alone regarding test accuracy and computation time; however, it produces a slightly
lower accuracy than this architecture with GloVe embeddings. Additionally, although the average
epoch durations are similar for this classification model with both embeddings, the architecture
with Word2Vec takes much longer to reach a 75% validation accuracy than the comparable
architecture with GloVe. The Word2Vec embedding-specific results are compared in Figure 6,
and lead to the same conclusions of optimal performance using the CNN model.

Word2Vec Embedding with Various Classification Models

0.8
0.7
0.6
>
v
© 0.5
>
o
<
0.4
0.3
— CNN Accuracy
LSTM Accuracy
0.2 —— CNN & LSTM Accuracy
0 5 10 15 20 25 30
Epoch

Figure 6: Classification Model Comparison of Validation Accuracy for Word2Vec Pre-trained Word Embeddings

A summary of these comparisons are displayed in Figure 7 and Figure 8. Figure 7 describes the
embedding-independent comparison, averaging results across both embeddings for all
classification models. As expected, the architecture using a CNN classification model outperforms
the others, regardless of embedding choice, as it performs better for both embeddings individually.
Additionally, LSTM alone produces significantly lower accuracies throughout the entire training
period, which was observed for all architectures.

14|Page

Average accuracy for models across all embeddings

0.8
0.7 1
0.6
>
v
e
3 051
<
0.4
0.3 — CNN Accuracy
LSTM Accuracy
—— CNN & LSTM Accuracy

0 5 10 15 20 25 30
Epoch
Figure 7: Embedding-independent Classification Model Comparison of Validation Accuracy

Figure 8 includes a model-independent comparison, supporting the conclusion that architectures
using GloVe word embeddings perform better than those using Word2Vec embeddings,
specifically in test accuracy.

Average accuracy for embeddings across all models

0.8

0.7

0.6

0.5

Accuracy

0.4

0.3

—— GloVe Accuracy

0.2 1 Word2Vec Accuracy

0 5 10 15 20 25 30
Epoch

Figure 8: Model-independent Embedding Comparison of Validation Accuracy

These comparisons lead to the recommendation that for Natural Language Processing
classification tasks, specifically using 20NewsGroup as the training set, the best performance is
produced by architectures using GloVe word embeddings with a CNN classification model.
Similar results are obtained for classification models consisting of a combination of CNN and
LSTM; however, there is no observed benefit in including an LSTM layer in the model. This is
the same conclusion that has been drawn in published comparisons, specifically in Wang, Nulty,
and Lillis' study [1].

1I5|Page

8 Conclusion and Future Work

In summary, this project focuses on implementing and comparing three distinct models: CNN,
LSTM, and a combination of CNN with LSTM, each utilizing GloVe and Word2Vec
embeddings. The primary objective was to assess their efficacy in text classification using the
20NewsGroups dataset. Among these models, the CNN architecture paired with GloVe
embeddings consistently outperformed others, yielding the highest accuracy.

While the project may not revolutionize the broader field of NLP, the findings highlight the
significance of specific embedding-model combinations. The success of GloVe with CNN
suggests the importance of considering both embedding type and neural architecture for
optimal results in text classification tasks.

The standout performer was the model employing GloVe embeddings with the CNN
architecture, achieving a test accuracy of 79.74% with an average epoch duration of 24.8
seconds. This combination demonstrated superior performance compared to other
configurations, including Word2Vec embeddings and LSTM architectures.

8.1 Areas for Improvement:

Despite the promising outcomes, certain challenges remained unaddressed. Notably, the
effectiveness of word embeddings is intricately tied to the dataset's characteristics. This raises
a potential limitation, indicating that these findings might be more specific to the nuances of
the 20NewsGroups dataset. A broader evaluation across diverse datasets could provide a more
comprehensive understanding of the generalizability of the results. Additionally, the
following areas could be explored in future work:

1. Different Datasets: To enhance the robustness of the conclusions, an extended
evaluation on different datasets could help validate the effectiveness of the identified
optimal configuration across varied text corpora.

2. Hyperparameters: Fine-tuning hyperparameters, such as dropout and learning rates,
was beyond this project's scope. A more exhaustive exploration in this regard might
yield further improvements in model performance.

3. Combination Models: Exploring combinations of models by integrating aspects from
multiple models or embeddings could be explored to potentially boost overall
classification accuracy.

4. Other NLP Tasks: While this project focused on text classification, extending the
models to other NLP tasks, and assessing their adaptability would contribute to a more
comprehensive understanding of their utility.

In conclusion, this project lays the groundwork for future endeavours by identifying optimal
configurations for text classification tasks. Acknowledging the challenges and proposing areas
for improvement ensures that the findings of this model serve as a stepping stone for further
exploration and refinement in the dynamic field of NLP.

16|Page

9
[1]

[2]

[3]

[5]
[6]

Work Cited

C. Wang, P. Nulty, and D. Lillis, “A Comparative Study on Word Embeddings in Deep Learning for
Text Classification,” Dec. 2020, pp. 37—46. doi: 10.1145/3443279.3443304.

“A unified approach to sentence segmentation of punctuated text in many languages.” Accessed:
Nov. 29, 2023. [Online]. Available: https://paperswithcode.com/paper/a-unified-approach-to-
sentence-segmentation

X. Zhou et al., “Hate Speech Detection Based on Sentiment Knowledge Sharing,” in Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), C. Zong, F. Xia, W. Li,
and R. Navigli, Eds., Online: Association for Computational Linguistics, Aug. 2021, pp. 7158-7166.
doi: 10.18653/v1/2021.acl-long.556.

“20 Newsgroups.” Accessed: Dec. 02, 2023. [Online]. Available:
https://www.kaggle.com/datasets/crawford/20-newsgroups

“Home Page for 20 Newsgroups Data Set.” Accessed: Dec. 02, 2023. [Online]. Available:
http://qwone.com/~jason/20Newsgroups/

“GloVe 6B.” Accessed: Dec. 04, 2023. [Online]. Available:

https://www .kaggle.com/datasets/anindya2906/glove6b

17|Page

	1 Motivation
	2 Problem Description
	2.1 Dataset
	2.2 GloVe
	2.3 Word2Vec
	2.4 Evaluation Framework
	2.5 Challenges and Limitations

	3 Contributions
	4 Related Work
	4.1 Foundational Paper*
	4.2 Relevant Journal Paper*
	4.3 Paper Addressing Similar Issue*

	5 Datasets
	6 Implementation
	6.1 Data Preprocessing
	6.2 Experimental Setup
	6.3 Model Architecture
	6.4 Training, Testing, and Validation

	7 Results and Discussion
	7.1 Results
	7.2 Discussion

	8 Conclusion and Future Work
	8.1 Areas for Improvement:

	9 Work Cited

